The function of the sarcoplasmic reticulum is not inhibited by low temperatures in trout atrial myocytes.
نویسندگان
چکیده
The effect of temperature on sarcoplasmic reticulum (SR) Ca(2+) uptake and release was measured in trout atrial myocytes using the perforated patch-clamp technique. Depolarization of the myocyte for 10 s to different membrane potentials (V(m)) induced SR Ca(2+) uptake. The relationship between V(m) and SR Ca(2+) uptake was not significantly changed by lowering the experimental temperature from 21 to 7 degrees C, and the relationship between total cytosolic Ca(2+) and SR Ca(2+) uptake was similar at the two temperatures with a pooled V(max) = 66 amol/pF and K(0.5) = 4 amol/pF. Quantification of the Ca(2+) release from the SR elicited by 10-ms depolarizations to different V(m) showed an increasing SR Ca(2+) release at more positive V(m) between -50 and +10 mV, whereas SR Ca(2+) release stagnated between +10 and +50 mV. Lowering of the temperature did not affect this relationship significantly, giving an SR Ca(2+) release of 1.71 and 1.54 amol/pF at 21 and 7 degrees C, respectively. Furthermore, clearance of the SR Ca(2+) content slowed down inactivation of the L-type Ca(2+) current at both temperatures (the fast time constant increased significantly from 10.4 +/- 1.9 to 15.0 +/- 2.0 ms at 21 degrees C and from 38 +/- 15 to 73 +/- 24 ms at 7 degrees C). Thus the SR has the capacity to remove the entire Ca(2+) transient at physiologically relevant stimulation frequencies at both 21 and 7 degrees C, although it is estimated that ~40% of the total Ca(2+) transient is liberated from and reuptaken by the SR with continuous stimulation at 0.5 Hz independently of the experimental temperature.
منابع مشابه
Temperature dependence of cardiac sarcoplasmic reticulum function in rainbow trout myocytes.
To explore how the cardiac sarcoplasmic reticulum (SR) functions over a range of temperatures, we used whole-cell voltage clamp combined with rapid caffeine application to study SR Ca(2+) accumulation, release and steady-state content in atrial myocytes from rainbow trout. Myocytes were isolated from rainbow trout acclimated to 14 degrees C, and the effect of varying stimulation pulse number, f...
متن کاملDetection, Properties, and Frequency of Local Calcium Release from the Sarcoplasmic Reticulum in Teleost Cardiomyocytes
Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal ...
متن کاملQuantification of Ca21 uptake in the sarcoplasmic reticulum of trout ventricular myocytes
Hove-Madsen, Leif, Anna Llach, and Lluis Tort. Quantification of Ca21 uptake in the sarcoplasmic reticulum of trout ventricular myocytes. Am. J. Physiol. 275 (Regulatory Integrative Comp. Physiol. 44): R2070–R2080, 1998.—We measured Ca21 uptake by the sarcoplasmic reticulum (SR) in trout ventricular myocytes, measuring indo 1 fluorescence in permeabilized cells or ionic currents in single myocy...
متن کاملSpatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum.
Ca(2+) signaling in cells is largely governed by Ca(2+) diffusion and Ca(2+) binding to mobile and stationary Ca(2+) buffers, including organelles. To examine Ca(2+) signaling in cardiac atrial myocytes, a mathematical model of Ca(2+) diffusion was developed which represents several subcellular compartments, including a subsarcolemmal space with restricted diffusion, a myofilament space, and th...
متن کاملExpression of calsequestrin in atrial and ventricular muscle of thermally acclimated rainbow trout.
Calsequestrin (CASQ) is the main Ca(2+) binding protein within the sarcoplasmic reticulum (SR) of the vertebrate heart. The contribution of SR Ca(2+) stores to contractile activation is larger in atrial than ventricular muscle, and in ectothermic fish hearts acclimation to low temperatures increases the use of SR Ca(2+) in excitation-contraction coupling. The hypotheses that chamber-specific an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 281 6 شماره
صفحات -
تاریخ انتشار 2001